Always-On
Programming lools

Tom Lieber (me) — MIT CSAIL
Joel Brandt — Adobe Research
Robert C. Miller — MIT CSAIL

Cars Provide Feedback

* Procedure: turn key,
step on pedal

* QOutput: car moves
forward

Software Car Feedback?

Car.prototype = {
ignition: function () { /*x ... */ },
rumble: function () { /* ... *x/ },
accelerate: function () { /* ... *x/ },
brake: function () { /* ... *x/ },
honk: function () { /* ... */ },
steer: function () { /* ... */ },

On-Demand = Hidden

Code Internal State Qutput

K on-demand
with debuggers

Continuous feedback
porepares us for trouble

Car.prototype = {

ignition: function () { /*x ... x/ },
rumble: function () { /*x ... */ 1},
accelerate: function () { /* ... *x/ },
brake: function () { /* ... *x/ },
honk: function () { /*x ... */ 1},
steer: function () { /*x ... *x/ },

s

Always-On Interfaces

‘ integrated Output

|
.

]
v |

4
4 |
y]
j |
t B
¥ ' |

|
: |
:
q |
|
~‘ ;

oy
R 1
\ !
§ :
.
N |
¥ -
i |
: .

N

Research Direction

e Are “always-on” intertaces helpful to programmers?
* |f so, how do they help people?

* How do we design and implement always-on
interfaces well”

Theseus Design (Goals

 Answer reachability questions
(LaToza, Myers 2010)

* Low threshold, high ceiling

* Power of breakpoints, ease of logging

function fetch(id, callback) {
var stream = downloadFile(1d);
var allData = '';

stream.on('data', function (data) {
allData += data;

1)

stream.on('end', function () {

callback(null, allData);
1)

stream.on('error', function (err) {
callback(err);

Rk

return stream;

2 calls ' function fetch(id, callback) {
var stream = downloadFile(1d);
var allData = '';

stream.on('data', function (data) {
allData += data;

1)

stream.on('end', function () {

callback(null, allData);

Rk

stream.on('error', function (err) {
callback(err);

| I

return stream;

2calls m stream.on('data', function (data) {
allData += data;

B ('data’ handler) (stream.js:5) 2:14:19.519 data =p [Buffer:512] @ this =p [object Object] Backtrace-

B ('data’ handler) (stream.js:5) 2:14:20.159 data =p [Buffer:512] @ this = p [object Object] Backtrace-

2 calls m stream.on('data', function (data) {
6 allData += data;

7 Rk

1callm stream.on('error', function (err) {
14 callback(err);

15 1)

Log

M ('data’ handler) (stream.js:5) 2:14:19.519 data =p [Buffer:512] @ this =p» [object Object] Backtrace-

B ('data’ handler) (stream.js:5) 2:14:20.159 data =p [Buffer:512] @ this =p [object Object] Backtrace-

B ('error' handler) (stream.js:13) 2:14:20.963 err = "connection failed" this = » [object Object] Backtrace

Log
® fetch (stream.js:]) 2:14:19363 id=1 callback=p» function returnvalue =p [object Object] Backtrace-
B ('data’ handler) (stream.js:5) asyne 2:14:19.519 data =p [Buffer:512) @ this =» [object Object] Backtrace -

B ('data’ handler) (stream.js:5) asyne 2:14:20.159 data = p [Buffer:512) @ this = » [object Object] Backtrace

® fetch (stream.js:1) 2:14:19366 id=2 callback =p function returnvalue =p [object Object] Backtrace-

B ('error' handler) (stream.js:13) asyne 2:14:20.963 err = "connection failed" this = » [object Object] Backtrace-

Design Principles

Design Principles

Think about bandwidth

2 calls
10
11
12
O calls
14
15

stream.on('end', function () {
callback(null, allData):

1) s

stream.on('error', function (err) {

¥);

callback(err);

Design Principles

Think about efficiency

e Can be used to open the full
tool using the user’s current
context

* Might answer their questions
without them having to click
anything

I

* Might clue programmer into N
problems that are otherwise
invisible

How does programmer
behavior change with
always-on tools”?

Fvaluation 1 Method

7/ MIT grad student participants
e 20-39 years old, male

e Two 20-minute tasks (A, B)
* A: Fix bug in 2,000-line, 8-file JavaScript page
» B: Calculate recursive file size with async API

 Three 5-minute tasks (C, D, E)

Evaluation 1 Results: Uses of Call Counts

lhree uses
of call counts

Evaluation 1 Results: Use #1 of Call Counts

Notice Incorrect
call count changes

‘| get 2 mouse up actions [every time | click]. Huh.”

Evaluation 1 Results: Use #2 of Call Counts

Compare two call
counts

‘I'd expect the call counts to be the same for both of
them, but they're not.”

Evaluation 1 Results: Use #3 of Call Counts

Compare call counts to
other data

17 files in directory, 17 calls to function

Evaluation 1 Results: Use of Call Counts?

Unclear whether call counts
helped find initial focus points

* One user felt strongly that Theseus was useful for
skimming, another the opposite

Evaluation 1 Results

With interactive code,
orogrammers arranged windows
to see code and app side-by-side

2/3 of the participants who started with task A
(complicated web page) all used side-by-side
technique on small tasks C and D

Fvaluation 2 Method

e O participants, professional developers, male
 Used Theseus for a week in daily work
* Interview:

* How they used Theseus during the week

 Work on task A from the previous study

Evaluation 2 Results

Programmers didn't use
Theseus until they got stuck

e Start by reading to “familiarize myselt with where all the
code Is”

* “| try to stay out of the debugger as much as possible
because it's a time suck.”

* But some did use it as part of finding initial focus points”

* Sillito. Asking and Answering Questions During a
Programming Change Task. Thesis, 2006.

Evaluation 2 Results

Call counts: weak, but
sufficient evidence

e “So this was called 7 times. ... Seems about right. |
didn't draw that many things.”

* "This was called a bunch, 319 times... maybe
they're simulating dragging.”

Evaluation 2 Results

Programmers want more
always-on displays

 Time spent in every function
* File-level counterpart for function call counts

e State changes on individual lines

Future Work

* [heseus: programmers occasionally had to
memorize call counts

* Always-on interfaces: more diverse participant
populations

Take-Aways

* Always-on displays enable interesting new types of
debugging interactions that deserve exploration

 When creating a programming tool, consider an
always-on component

* Call counts are surprisingly useful... what else?

Try It Yourselt

* http://brackets.io/

* File > Extension Manager, install “Theseus”

e Source: https://github.com/adobe-research/theseus

* Avallable since February 11, 2013
e |nstalled >= 2,500 times as of December

* 5/ bug reports & feature requests as of today

http://brackets.io/
https://github.com/adobe-research/theseus

Do It Yourself

* https://github.com/adobe-research/fondue

 eval(fondue.instrument(src));

 Real-time information: functions called,
parameter values, etc

e tom@alltom.com

https://github.com/adobe-research/fondue
mailto:tom@alltom.com

Thanks!

o Get it: http://brackets.io/ then install “Theseus”

e Fork it: https://github.com/adobe-research/theseus

* Make it: https://github.com/adobe-research/fondue

http://brackets.io/
https://github.com/adobe-research/theseus
https://github.com/adobe-research/fondue

