
Always-On
Programming Tools

Tom Lieber (me)
Joel Brandt

Robert C. Miller

— MIT CSAIL
— Adobe Research
— MIT CSAIL

Cars Provide Feedback

• Procedure: turn key,
step on pedal

• Output: car moves
forward

Software Car Feedback?
Working FilesWorking Files

theseus-examples

car.html

blog

canvas_painter_v0.1

chat

chi-paper

chi-presentation

Car-Overheat.gif

car.html

fib.html

fib.js

demo

example-01.html

example-02.html

example-03.html

examples

mario

rwc

Line 25, Column 40 — 37 Lines Spaces: 4 HTML

<script src="jquery.js?theseus=no"></script>
<script>
function Car() {}

Car.prototype = {
 ignition: function () { /* ... */ },
 rumble: function () { /* ... */ },
 accelerate: function () { /* ... */ },
 brake: function () { /* ... */ },
 honk: function () { /* ... */ },
 steer: function () { /* ... */ },
};

$(function () {
 var car = new Car;
 $("#ignition").on("click", function () {
 car.ignition();
 setTimeout(function () {
 setInterval(car.rumble, 300);
 }, 1000);
 });
 $("#accelerate").on("click", car.accelerate);
 $("#brake").on("click", car.brake);
 $("#honk").on("click", car.honk);
 $("#steer").on("click", car.steer);
});

</script>

<button id="ignition">Ignition</button>
<button id="accelerate">Accelerate</button>
<button id="brake">Brake</button>
<button id="honk">Honk</button>
<button id="steer">Steer</button>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 Live
Preview
was
cancelled
because
the page
was
closed in
the
browser

Code OutputInternal State

on-demand
with debuggers

On-Demand = Hidden

Continuous feedback
prepares us for trouble

Working FilesWorking Files

theseus-examples

car.html

blog

canvas_painter_v0.1

chat

chi-paper

chi-presentation

Car-Overheat.gif

car.html

fib.html

fib.js

demo

example-01.html

example-02.html

example-03.html

examples

mario

rwc

Line 25, Column 40 — 37 Lines Spaces: 4 HTML

<script src="jquery.js?theseus=no"></script>
<script>
function Car() {}

Car.prototype = {
 ignition: function () { /* ... */ },
 rumble: function () { /* ... */ },
 accelerate: function () { /* ... */ },
 brake: function () { /* ... */ },
 honk: function () { /* ... */ },
 steer: function () { /* ... */ },
};

$(function () {
 var car = new Car;
 $("#ignition").on("click", function () {
 car.ignition();
 setTimeout(function () {
 setInterval(car.rumble, 300);
 }, 1000);
 });
 $("#accelerate").on("click", car.accelerate);
 $("#brake").on("click", car.brake);
 $("#honk").on("click", car.honk);
 $("#steer").on("click", car.steer);
});

</script>

<button id="ignition">Ignition</button>
<button id="accelerate">Accelerate</button>
<button id="brake">Brake</button>
<button id="honk">Honk</button>
<button id="steer">Steer</button>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 Live
Preview
was
cancelled
because
the page
was
closed in
the
browser

Code Output

Always-On Interfaces
integrated

with

Research Direction

• Are “always-on” interfaces helpful to programmers?

• If so, how do they help people?

• How do we design and implement always-on
interfaces well?

Theseus Design Goals

• Answer reachability questions  
(LaToza, Myers 2010)

• Low threshold, high ceiling

• Power of breakpoints, ease of logging

Design Principles

Think about bandwidth

Design Principles

Think about efficiency
• Can be used to open the full

tool using the user’s current
context

• Might answer their questions
without them having to click
anything

• Might clue programmer into
problems that are otherwise
invisible

Design Principles

How does programmer
behavior change with

always-on tools?

Evaluation 1 Method
• 7 MIT grad student participants

• 20-39 years old, male

• Two 20-minute tasks (A, B)

• A: Fix bug in 2,000-line, 8-file JavaScript page

• B: Calculate recursive file size with async API

• Three 5-minute tasks (C, D, E)

Three uses
of call counts

Evaluation 1 Results: Uses of Call Counts

Notice incorrect
call count changes

“I get 2 mouse up actions [every time I click]. Huh.”

Evaluation 1 Results: Use #1 of Call Counts

Compare two call
counts

“I’d expect the call counts to be the same for both of
them, but they’re not.”

Evaluation 1 Results: Use #2 of Call Counts

Compare call counts to
other data

17 files in directory, 17 calls to function

Evaluation 1 Results: Use #3 of Call Counts

Unclear whether call counts
helped find initial focus points

• One user felt strongly that Theseus was useful for
skimming, another the opposite

Evaluation 1 Results: Use of Call Counts?

With interactive code,
programmers arranged windows

to see code and app side-by-side

2/3 of the participants who started with task A
(complicated web page) all used side-by-side
technique on small tasks C and D

Evaluation 1 Results

Evaluation 2 Method
• 9 participants, professional developers, male

• Used Theseus for a week in daily work

• Interview:

• How they used Theseus during the week

• Work on task A from the previous study

Programmers didn’t use
Theseus until they got stuck
• Start by reading to “familiarize myself with where all the

code is”

• “I try to stay out of the debugger as much as possible
because it’s a time suck.”

• But some did use it as part of finding initial focus points*

Evaluation 2 Results

* Sillito. Asking and Answering Questions During a
Programming Change Task. Thesis, 2006.

Call counts: weak, but
sufficient evidence

• “So this was called 7 times. ... Seems about right. I
didn’t draw that many things.”

• “This was called a bunch, 319 times... maybe
they’re simulating dragging.”

Evaluation 2 Results

Programmers want more
always-on displays

• Time spent in every function

• File-level counterpart for function call counts

• State changes on individual lines

Evaluation 2 Results

Future Work

• Theseus: programmers occasionally had to
memorize call counts

• Always-on interfaces: more diverse participant
populations

Take-Aways

• Always-on displays enable interesting new types of
debugging interactions that deserve exploration

• When creating a programming tool, consider an
always-on component

• Call counts are surprisingly useful… what else?

Try It Yourself
• http://brackets.io/

• File > Extension Manager, install “Theseus”

• Source: https://github.com/adobe-research/theseus

• Available since February 11, 2013

• Installed >= 2,500 times as of December

• 57 bug reports & feature requests as of today

http://brackets.io/
https://github.com/adobe-research/theseus

Do It Yourself

• https://github.com/adobe-research/fondue

• eval(fondue.instrument(src));

• Real-time information: functions called,
parameter values, etc

• tom@alltom.com

https://github.com/adobe-research/fondue
mailto:tom@alltom.com

Thanks!

• Get it: http://brackets.io/ then install “Theseus”

• Fork it: https://github.com/adobe-research/theseus

• Make it: https://github.com/adobe-research/fondue

http://brackets.io/
https://github.com/adobe-research/theseus
https://github.com/adobe-research/fondue

