
Programming With Everybody: Tightening
the Copy-Modify-Publish Feedback Loop

Tom Lieber
MIT CSAIL

32 Vassar St, Cambridge, MA
tl@csail.mit.edu

Robert C. Miller
MIT CSAIL

32 Vassar St, Cambridge, MA
rcm@mit.edu

ABSTRACT
People write more code than they ever share online. They
also copy and tweak code more often than they contribute
their modifications back to the public. These situations can
lead to widespread duplication of effort. However, the copy-
modify-publish feedback loop which could solve the prob-
lem is inhibited by the effort required to publish code on-
line. In this paper we present our preliminary, ongoing effort
to create Ditty, a programming environment that attacks the
problem by sharing changes immediately, making all code
public by default. Ditty tracks the changes users make to
code they find and exposes the modified versions alongside
the original so that commonly-used derivatives can eventu-
ally become canonical. Our work will examine mechanical
and social methods to consolidate global effort on common
code snippets, and the effects of designing a programming
interface that inspires a feeling of the whole world program-
ming together.

Author Keywords
Programming environments; collaboration; awareness; open
source software development; social computing.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User Inter-
faces - Graphical user interfaces.

INTRODUCTION
The natural state of programming today is one person, one
computer, and a local disk drive. Sharing code on blogs,
forums, question-and-answer sites, and public source code
repositories has become commonplace, but only when the
user has an explicit intention to publish their work. On the
other hand, it’s easy to steal code, and copying is a common
strategy to build programs efficiently [1]. Code that’s pub-
lished online by one person can be used by many—adapted,
tweaked, and tucked away. Though some of those (poten-
tially) improved versions make it online where they can be
refined again by the next wave of scavengers, often they’re
simply forgotten because putting code online takes effort and
doesn’t help the user complete their current task any faster.

Copyrght is held by the author/owner(s).
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
ACM 978-1-4503-1582-1/12/10.

Figure 1. Ditty is a collection of niche programming environments on
the web. This one caters to generative music. Pictured above: the palette
of frequently-used commands (left), interactive xylophone visualization
(top), and code canvas (right).

Nevertheless, the modifications made during that process can
be useful to others. Sometimes the code’s behavior is changed
so that it can work in a new environment. Sometimes the
adaptation is simply to improve the code’s design according
to the new author’s aesthetics. Those instances (and likely
others) result in massively duplicated effort if the use cases
are common or the original design was poor. If we can some-
how harvest the effort people put into adapting code to aid
others who would otherwise need to do the same, then there
is the potential to save a lot of time for everybody.

This abstract is about Ditty, our programming environment
that attempts to address the problem by combining these two
strategies:

• Make all code public by default, and

• Link snippet instances to their original sources so that
derivatives can be easily discoverable.

What follows in the next section is a detailed description of
the relevant portions of the interface and the reasoning behind
their design.

PROTOTYPE IMPLEMENTATION
Ditty is available as a web site that works in many modern
desktop browsers when used with a keyboard and mouse.

Because we wanted to easily be able to track the types of
modifications users make to the code blocks, and to increase
the approachability of the interface, we decided to implement



Figure 2. A command block’s name is a template where parame-
ters are the segments surrounded by square brackets. Both terse
(“substr([string], [pos], [length])”) and natural language (“substring of
[string], [length] characters long, starting at [position]”) styles are sup-
ported.

Ditty as a tile-based language. Users construct programs by
dragging together code blocks, manipulating the syntax tree
of their program directly. It works much like in Scratch, Al-
ice, and many others [8, 2, 4, 9, 10, 5].

Modularity is achieved through the creation of command
blocks (analogous to functions and macros in other lan-
guages). The ‘name’ of a command block is just a free-form
template, with sub-strings knocked out to create slots where
parameters can go, similar to BYOB [3] (see Figure 2).

Searching for Public Commands
As mentioned before, all commands are public. When a user
edits the definition of someone else’s command, a new ver-
sion is created with a link back to the original. Thus, we can
easily track every command’s ancestry. The user can navi-
gate the family tree both ways in order to explore all of the
available variations. People can also see all of the instances
where a command is used, which is useful for finding exam-
ples. For the moment, sets of parents, children, and callers
are displayed in simple lists, but we are exploring alternatives
for finding useful commands quickly.

The primary means of accessing blocks created by other users
is search. Ditty augments the drag-and-drop programming
interface with keyboard-based auto-completion. If the user
clicks a slot instead of dragging a block into it, a text box
appears into which they can type the name of the block that
they have in mind. As they type, a keyword search of every
available command (even commands created by other users)
is performed and the results are displayed in a drop-down
menu. Closer matches and matches which have been used
recently are given priority in the list.

When commands sharing a parent-child relationship are both
in the results (one is a modified version of the other), we plan
to adjust the rank depending on metrics like ‘number of times
used’ and ‘number of times modified,’ which we expect to
correlate well with the likelihood that the user would want to

choose one command over another. We hope that over time
this will allow the alternatives which are more generally use-
ful to rise in the list for everyone.

CONCLUSION
Public-by-default is not a new idea. For example, CoScripter
automatically publishes scripts to a public wiki where they
can be copied and edited [6]. Tracking code provenance is
also not new; source control systems are built to do that, and
systems like Blueprint provide that functionality for snippets
copied from the web [1]. Scratch also provides means of au-
tomatic and manual attribution for resources that were copied
from another project [7].

What’s unique about Ditty is the tightness of its copy-modify-
publish feedback loop. Everything about the editing inter-
face, such as global auto-complete and immediate publica-
tion, encourages users to act as if entire world shares a single,
global namespace.

Ditty is still in the development stage, although we are near-
ing a public release. Initial user studies suggest the basic us-
ability of the system for experienced programmers in a lab
setting, but it remains to be seen how scalable and usable the
ideas turn out to be in practice. Our hope is to work with real
users in the wild to determine how best to employ this radical
means of collaboration.

REFERENCES
1. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S.

Example-centric programming: integrating web search into the
development environment. In Proc. SIGCHI, ACM (2010), 513–522.

2. Cooper, S., Dann, W., and Pausch, R. Teaching objects-first in
introductory computer science. In ACM SIGCSE Bulletin, vol. 35,
ACM (2003), 191–195.

3. Harvey, B., and Mönig, J. Bringing no ceiling to Scratch: Can one
language serve kids and computer scientists? Proc. Constructionism
(2010).

4. Kay, A. Squeak Etoys authoring & media. Viewpoints Research
Institute (2005).

5. Ko, A., and Myers, B. Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors. In
Proc. SIGCHI, ACM (2006), 387–396.

6. Leshed, G., Haber, E., Matthews, T., and Lau, T. CoScripter:
automating & sharing how-to knowledge in the enterprise. In Proc.
SIGCHI, ACM (2008), 1719–1728.

7. Monroy-Hernández, A., Hill, B., Gonzalez-Rivero, J., et al. Computers
can’t give credit: how automatic attribution falls short in an online
remixing community. In Proc. SIGCHI, ACM (2011), 3421–3430.

8. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond,
E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B.,
et al. Scratch: programming for all. Communications of the ACM 52, 11
(2009), 60–67.

9. Warth, A., Yamamiya, T., Ohshima, Y., and Wallace, S. Toward a more
scalable end-user scripting language. In Creating, Connecting and
Collaborating through Computing, IEEE (2008), 172–178.

10. Wolber, D. App inventor and real-world motivation. In Proc. SIGCSE,
ACM (2011), 601–606.


	Introduction
	PROTOTYPE IMPLEMENTATION
	Searching for Public Commands

	CONCLUSION
	REFERENCES 

