
Really Programming in Public
Tom Lieber

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02142
E-mail: dynamic@mit.edu

I. INTRODUCTION

Once online, code multiplies. One programmer asks a pro-
gramming question, another person answers it with a snippet
of code, and then the snippet is pasted into countless projects,
adapted, tweaked, and tucked away. Some of those improved
versions make it back online where they can be refined again
by the next wave of scavengers, but often they’re simply
forgotten because putting code online takes effort.

Nevertheless, those modifications might be useful to others.
Sometimes the behavior needs to change for it to work in
a new environment. Sometimes the adaptation is simply to
improve the snippet’s design according to the new author’s
aesthetics. Both instances result in massively duplicated effort
if the use cases are common or the original design was poor.
That’s true for entire libraries as well; it is common for
people to fork entire projects on GitHub to track and share
their personal modifications, but that’s not possible for most
snippets on the web.

I believe that an efficient snippet ecosystem requires a less
formal and more automatic means of sharing changes. A first
step would be to short-circuit the snippet adaptation feedback
loop by:

• making all code public by default, and
• linking snippet instances to their original sources so that

derivatives are easily discoverable.
This would allow users to benefit from the purely selfish
process of adapting code even in the absence of the additional,
altruistc step of publishing the changes afterward. Snippets
could improve in quality over time whether users think of
sharing them or not.

There are many ways to approach an interface for such
collaboration and the work described here is one possible
manifestation of the idea.

II. REALLY PROGRAMMING IN DITTY

One path to this goal would be to create an IDE plug-in like
Blueprint that remembers the origin of pasted code [1] and
automatically uploads modifications to a public server. Others
who viewed the same snippet through the plug-in would also
be able see common modifications and choose one of them
instead. This path is complicated because, for most languages,
it would require tracking changes to amorphous blobs of text
in a sea of amorphous blobs of text, a problem which is
orthogonal to the ideas I’d like to test.

Instead, I’m working on a simple language and web-based
programming environment called Ditty. It is easily amenable
to automatic change tracking because the language is tile-
based (like Scratch, where the syntax tree is edited directly,
typically using drag-and-drop gestures [2]), so all program
edits are well-defined transformations. The decision to use
tiles has the side benefits of being more usable for novices and
being able to support natural language tile names, which may
accommodate opportunistic searching even without additional
metadata.

Ditty’s minimum sharable unit is the tile definition. User-
defined tiles (which are like functions or macros in other
languages) are public by default and are immediately available
for use by other programmers. They can be found while
browsing the site, inspecting others’ code, or serendipitously
through textual auto-completion, which works as a global
search interface.

When a user modifies someone else’s tile, a fork is automat-
ically created in their name. That two-way link to the original
is maintained and exposed to the user in both directions. When
that tile appears in a search result, both its ancestors and
descendants can be viewed as well. This allows the user to
find related versions that may be better suited to the their
taste and the task at hand, and to compare with the original to
determine what changed. It’s a common browsing mechanism
for source code repositories like GitHub, but in Ditty the units
under consideration are as fine-grained as a function and the
infrastructure doesn’t require any action that the user wasn’t
already going to do to use the code.

III. PROGRAMMING WITH EVERYBODY

Public code is not a new idea; for example, CoScripter
automatically publishes scripts to a public wiki where they
can be copied and edited [3]. It’s the fact that reading from
and writing to the public code database is so tightly integrated
with the programming environment that raises the following
array of interesting research questions.

A. Programmer Behavior

Programming has typically been a lonely endeavor, espe-
cially for the hobbyist working from home. The authorship
information displayed in Ditty provides opportunities to make
connections with other programmers, and serves as a constant
reminder of just how many shoulders one stands upon. Auto-
matic publication and attribution may mean that such a user



Fig. 1. There are several Ditty environments, each one supporting a different problem domain, but sharing a common language. This one caters to text
processing tasks. Pictured are the built-in palette of frequently-used commands and the code canvas.

could log in one day to find that tiles they wrote have been
used and adapted by many people that they’ve never met. How
will the user react?

Some existing research in this vein comes from a study of
GitHub users [4]. Most GitHub activity is public, as with Ditty,
but users have the opportunity to carefully prepare everything
they submit to the site. As a result, many people feel pressured
to present a particular image of themselves. One interesting
finding is that the motivation to share code comes more from
noticing one’s own reliance on others’ code than realizing
that one’s published code is widely used. Using others’ code
is much more likely in Ditty because it’s facilitated by the
auto-completion interface, so the effect may be even more
pronounced. I hypothesize that Ditty’s interface will encourage
the writing of more modular code because of the spotlight
effect.

B. Attribution

Research on the Scratch user population [5] raises inter-
esting questions about attribution in Ditty. Scratch projects
(self-contained applets with games and animation) can be
published to the web so that others may interact with them
and copy their source material, including its code. One of the
important lessons the authors learned from interviewing users
(who were mostly children) was that automatic attribution was
often inadequate. Some people felt that reuse was stealing
unless a heartfelt ‘thanks’ was included as well. Some rejected
the idea of reuse entirely. What kinds of attribution will be
needed in Ditty, where reuse and derivation are integrated into
the programming workflow and the definition of a single tile
can rely upon dozens of other users’ work?

C. Broken Code

It may become a challenge for users to sift through broken
code. Ditty can vouch for popular tiles based on the assump-
tion that they wouldn’t be popular if they were broken, but
it may be time-consuming for users to confirm the legitimacy
of the rest. It remains to be seen what percentage of code is

broken and whether good heuristics can be found to detect
brokenness.

D. Interface Evolution

Built-in tiles are indistinguishable from user-defined tiles,
and all tiles are public, so each one can be thought of as
an addition to a single, community-curated language. The
interface should reflect that. For example, the starting palette of
commands is a categorized list that I designed to cover users’
basic needs, but can it be automatically updated as better base
abstractions are created and new coding patterns emerge?

IV. DITTY’S FUTURE
Results from preliminary user studies indicate that Ditty is

usable in a lab setting by experienced programmers, and a
field test demonstrated excitement about the new features I’ve
described, but how well the model scales is a mystery I am
still working to solve. In order to gauge the usefulness of the
ideas presented here, I plan to launch Ditty as a public web
site so that I can observe how it’s used (or isn’t used) in the
wild. If successful, it has the potential to bring a world’s worth
of unpublished code improvements to light at last.

REFERENCES

[1] J. Brandt, M. Dontcheva, M. Weskamp, and S. Klemmer, “Example-
centric programming: integrating web search into the development envi-
ronment,” in Proceedings of the 28th International Conference on Human
Factors in Computing Systems. ACM, 2010, pp. 513–522.

[2] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[3] G. Leshed, E. Haber, T. Matthews, and T. Lau, “CoScripter: automating
& sharing how-to knowledge in the enterprise,” in Proceedings of the
twenty-sixth annual SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2008, pp. 1719–1728.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 1277–1286.

[5] A. Monroy-Hernández, B. Hill, J. Gonzalez-Rivero et al., “Computers
can’t give credit: how automatic attribution falls short in an online
remixing community,” in Proceedings of the 2011 Annual Conference
on Human Factors in Computing Systems. ACM, 2011, pp. 3421–3430.


